$$
F_{n e t}=m a \quad f=\mu N
$$

1. Give two examples, one for each part, of something during your day that demonstrates Newton's First Law.
2. A car going $27 \mathrm{~m} / \mathrm{s}$ slams on the brakes to stop from hitting a cow. The driver manages, but only just. If the tire marks on the pavement stretch for 20 m and the mass of the car and driver is 1700 kg , what was the magnitude of the force applied to the car by the brakes?
3. A spaceship with a mass of $4,000 \mathrm{~kg}$ is flying through a cloud of space dust (ice, rocks, gases...). The engines exert 40,000 N of thrust but the acceleration of the ship is $8.2 \mathrm{~m} / \mathrm{s}^{2}$. Find the drag force that the space dust is exerting on the ship.
4. A block is at rest on an incline plane. The plane is inclined at an angle of 15°. Find the coefficient of static friction.
5. A block is sitting on an incline that makes an angle of 35° with the horizontal. If the object is being held in place due to friction, find the magnitude of the static friction force. The mass of the object is 52 kg .
6. A sled is being dragged across the ground as shown below. If the mass of the sled is 15 kg , what is the normal force acting on the sled?

$$
\mathrm{F}=70 \mathrm{~N}
$$

