Forces

- Weight (W)
- Units: Newtons
- Weight is the force due to gravity upon an object
- Since the force is gravity, the acceleration that is caused by the force must be the acceleration due to gravity

$$
F_{N e t}=m a
$$

$$
F_{G r a v i t y}=W=m g
$$

- Normal Force (F_{N})
- The normal force is a contact force
- A contact force is a force that only exists when two objects are in contact with each other
- Typically will occur when an object is resting on a surface
- The normal force always occurs in a direction that is normal to the surface of contact
- Don't know what the word "normal" means in mathematics? Look it up!
- Magnitude of the normal force depends on how hard the objects are being pressed together
- The harder they are being pressed together, the larger the normal force
- Consider a book resting on a table
- The book is resting on the table, therefore its acceleration is zero
- The acceleration of the book is zero, therefore the net force on the book is zero
- The net force on the book is zero, therefore the net force in the y-direction is zero
- This means that the forces pointed up must be equal to the forces pointed down
- For the book (and for that matter any object that is just resting on a surface) the only two forces are the normal force and the weight
- Since the net force in the y-direction is zero, the normal force and the weight are equal to each other
" $\mathrm{F}_{\mathrm{N}}=\mathrm{W}$

- How would the normal force change if I started pressing down on the book?
- If I am pushing down on the book, there are two forces in the downward direction, my pushing force and the weight
- The net force in the y-direction is still zero, therefore the normal force must increase to counter both forces
- In this case, $\mathrm{F}_{\mathrm{N}}=\mathrm{W}+\mathrm{F}$

- How would the normal force change if I started lifting up on the book?
- If I am lifting up on the book, there are two forces in the upwards direction, my lifting force and the normal force
- The net force in the y-direction is still zero, therefore the normal force must decrease to counter both forces
- In this case, $\mathrm{F}_{\mathrm{N}}+\mathrm{F}=\mathrm{W}$

- Example
- During a circus balancing act, a woman performs a headstand on top of a man's head. The woman weighs 490 N and the man's head and neck weight 50 N . It is primarily the seventh cervical vertebra in the spine that supports all the weight above the shoulders. What is the normal force on this vertebra before and during the act.
- Get the given written down along with the free-body diagrams

Before the Act:
Before the act, the man's head is not accelerating, therefore the net force is zero

If the net force is zero, then the normal force is equal to the weight
$F_{N}=50 \mathrm{~N}$

During the Act:

During the act, the man's head is still not accelerating, therefore the net force is still zero

Therefore $\mathrm{F}_{\text {net }}=\mathrm{F}_{\mathrm{N}}-\mathrm{W}_{\mathrm{H}}-\mathrm{W}_{\mathrm{W}}=0$
Therefore $\mathrm{F}_{\mathrm{N}}=\mathrm{W}_{\mathrm{H}}+\mathrm{W}_{\mathrm{w}}$

$$
F_{N}=540 \mathrm{~N}
$$

- Frictional Forces
- Friction is a contact force
- What must be true in order to have a contact force?
- Friction always is in the direction that is against the motion (or would be motion) of the object
- This means that friction is always points in a direction parallel to the surface

Friction

- Origins of the Friction Force
- When two objects are in contact with each other, they are in contact at relatively few points
- Even with highly polished surfaces, the points of contact are microscopic
- The points of contact are close enough that the molecules exert intermolecular forces on each other
- We call these intermolecular forces friction

- Static Friction Force $\left(F_{s}\right)$
- The word static, if you did not know, means "not moving"
- So, if two objects (or an object and a surface) are in contact with each other and there is no motion between the two, then the friction I could have is called static friction
- What do I mean by motion between the two?
- Picture a block sitting on a table
- If there are no horizontal forces acting on the block then there is no static friction
- $\mathrm{F}_{\mathrm{S}}=0$
- The friction force is zero because there are no horizontal forces for the friction to oppose
- If I apply a force to the book and it does not move, then the net force on the book is zero
- Meaning that the force I push with must be cancelled out by the static friction force
- Meaning that the static friction force is equal to the force I am exerting

- If I increase the force I exert on the book and it still does not move, what can I say about the static friction force?
- The static friction force must increase to cancel the force I exert

- The static friction force will continue to grow and equal the applied force until the static friction force reaches its maximum value
- $\mathrm{F}_{\mathrm{S}}{ }^{\text {Max }}$ stands for the maximum static friction force
- If I increase the applied force above $\mathrm{F}_{\mathrm{S}}{ }^{\text {Max }}$ the object will accelerate
- This is because there is now a non-zero net force
- Thus, the magnitude of F_{s} is equal to the applied force and is less than or equal to $F_{S}{ }^{\text {Max }}$

- Experimental evidence has shown that $\mathrm{F}_{\mathrm{s}}{ }^{\text {Max }}$ has two characteristics
- First, that $F_{S}{ }^{\text {Max }}$ is independent of the area of contact
- Meaning that the amount of area of the object that is touching the surface does not affect the amount of static friction
- Second, that $F_{S}{ }^{\text {Max }}$ is proportional to F_{N}
- The harder the surface pushes on the object, the more contact points between the surface and the object
- The more contact points, the stronger the static friction force

$F_{S}{ }^{M a x}$ is proportional to F_{N}
- In order to turn my proportion into an equation, I need a proportionality constant
- The proportionality constant that makes $F_{S}{ }^{\text {Max }}$ equal to F_{N} is called the coefficient of static friction
- Coefficient of Static Friction $\left(\mu_{s}\right)$
- The coefficient of static friction is just a number that is found through experiments
- It is based off of the types of materials in contact, the condition of the materials, and other variables
- Typical values range from . 01 for smooth surfaces to 1.5 for rough surfaces

- Kinetic Friction $\left(F_{k}\right)$
- The word kinetic means "motion" however kinetic friction only applies when an object is sliding over a surface (or another object)
- As the object slides over the surface, each will exert a force on the other that opposes the motion
- This is called kinetic or sliding friction force (F_{K})
- Experimental evidence shows that F_{K} has three characteristics
- First, that F_{k} is independent of the area of contact
- Meaning that the amount of area of the object that is touching the surface does not affect the amount of static friction
- Second, that F_{k} is proportional to F_{N}
- The harder the surface pushes on the object, the more contact points between the surface and the object
- The more contact points, the stronger the static friction force
- Third, F_{k} is independent of the speed of the sliding motion, if the speed is small
- Once again, there needs to be a proportionality constant to make F_{K} equal to F_{N}
- This constant is called the coefficient of kinetic friction
- Coefficient of Kinetic Friction (μ_{k})
- The coefficient of kinetic friction is just a number that is found through experiments
- It is based off of the types of materials in contact, the condition of the materials, and other variables
- Typical values range from . 01 for smooth surfaces to 1.5 for rough surfaces
- The values of μ_{K} are always less than μ_{S} for any two given surfaces
- This is because it takes less force to keep an object sliding than it does to start an object sliding
- Therefore, F_{K} is always less than F_{S}

- Example (to be worked in class)

- A sled, traveling at $4 \mathrm{~m} / \mathrm{s}$, enters some snow. How far does the sled travel before it stops? The coefficient of kinetic friction is .05 and the mass of the sled is 38 kg .

If the coefficient of static friction is .35 , what is the force required to get the sled started moving again?

- Example (to be worked in class)

- A car, sitting on a dry asphalt, starts to accelerate. If the coefficient of static friction between the tires and the road is .61 and the mass of the car is 1150 kg , what is the maximum force that the car can exert on the ground and still be able to drive? What is the maximum acceleration that the car can undergo?

- Drag Forces

- Drag forces occur when a solid travels through a fluid
- A fluid is any substance that flows
- l.e. a liquid or a gas
- Drag forces always point in the direction opposite the motion of the solid
- This is because drag forces resist the motion of the solid
- The resistance results from the molecules of the fluid colliding with the solid as it passes through the fluid
- The more molecules that the solid will run into, the larger the drag force
- How can the amount of drag force also be related to density?
- Air resistance is the most well known of the drag forces

- Air Resistance

- Air Resistance is dependent on two things
- First, air resistance depends on the shape of the object, specifically, the surface area presented to the resistance
- The larger the surface area, the more molecules the object will run into per second
- The more molecules the object runs into per second, the greater the air resistance
- Second, it is dependent on the speed of the object
- The faster the object is going, the more molecules the object is running into per second
- The more molecules the object runs into per second, the greater the air resistance
- Tension
- Tension is a force that acts through a rope or cable
- If you pull on the end of a rope or cable, the force is transmitted down the rope to the object that is attached to the other end of the rope
- If we assume that we are using a massless rope, there is no loss of force
- If the rope or cable has a mass, then some of the force applied goes into accelerating the rope or cable
- This force is "used up" so there is a net loss of force from one end to the other
- This is why we are going to make the assumption that ALL ropes and cables in this class are massless
- Equilibrium
- Equilibrium refers to a lack of change, specifically, the velocity is not changing
- If an object is in equilibrium, then the acceleration of the object is equal to zero
- If an object is in equilibrium, then the net forces are equal to zero
- Since force is a vector, the force in each direction is also zero
- The two equations below will be the two equations that we will use to solve equilibrium problems

- Strategy for Solving Problems
- Select the system (object) that you are going to apply the two equilibrium equations to
- Draw a free-body diagram for the system
- Choose a convenient coordinate axes for your problem
- Apply the two equilibrium equations to the system
- Solve the two equations for the unknown variable
- We will solve the next three examples in class
- Write down the givens, leaving about $1 / 2$ a page below where you can put the example work
- Example 1
- A jet plane is flying with a constant speed along a straight line, at an angle of 30° above the horizontal. The plane has a weight whose magnitude is $86,500 \mathrm{~N}$. Its engines deliver a thrust of $103,000 \mathrm{~N}$. In addition, the lift force and air resistance act on the plane. Find L and R.

- Example 2
- The traction of a foot is pictured below. A 2.2 kg mass creates tension in a rope that runs around two pulleys. Because the same rope creates both tensions, T_{1} and T_{2} have the same magnitude. Find the magnitude of F, or the force of the foot on the foot pulley.

- Example 3
- An automobile engine has a weight of 3150 N . The engine is being put into a car as the diagram shows below. To position the engine, a worker is using a rope. Find the tension T_{1} in the supporting cable and T_{2} in the positioning rope.

Foxitot by Bill Amend

