Two-Dimensional Motion

By the end of this unit, you will be able to:

Explain why a 2D kinematics problem can be modeled as two 1D kinematics problem

Solve a 2D kinematics problem

Solve a projectile problem when the object is launched with an initial velocity at an angle above the ground

Solve a projectile problem when the object is launched with a horizontal initial velocity

- Two-Dimensional Motion
 - Two-dimensional motion is motion in two directions
 - Typically along the x and y directions
 - Kinematics equations apply to 2D motion as well as linear motion
 - As long as the acceleration is constant
 - If you remember, that is a requirement to use kinematics
 - When an object is moving, the motion along any axis is independent of all other axes.
 - The x and y axis are independent of each other
 - If they are independent then they do not affect/influence/impact the other direction
 - Say I have an object moving in the x and y directions
 - If I suddenly stop all motion in the y direction, the object will continue to move in the x direction since the y direction does not affect the x direction

- Knowing this, all 2D motion problems can be simplified to two linear motion problems
- Essentially, this is all there is to know about two-dimensional motion

- Projectile Motion
 - Projectile motion is the curved motion of an object that is given an initial velocity and then moves as though in free fall
 - What is true about an object in free fall?
 - Every projectile has a trajectory
 - The trajectory is just the curved path followed by a projectile
 - The shape of this path will always be a parabola
 - Projectile motion is a specific type of 2D motion
 - The projectile is moving in the x and y directions
 - So, like all 2D motion, the two dimensions are independent of each other
 - Meaning that I can solve a projectile problem be looking at two linear motion problems

- Acceleration

- Since the object is in free fall, the only thing acting on the object is gravity
- Gravity only acts in the y-direction
 - The acceleration in the y-direction is 9.8 m/s^2
 - I will use the symbol a_v to reference the acceleration in the y-direction
- There is no acceleration in the x-direction
 - So, $a_x = 0$
 - What does this mean about the velocity in the x-direction?

$$a_x = 0$$
 $a_y = g = 9.8m/s^2$

Initial Velocity

- Projectile starts with an initial velocity that can be broken up into components.
 - $-v_{ox}$ and v_{oy} are the components of the given initial velocity v_{ox}
- Vertical Velocity at the Top of the Trajectory
 - The speed in the y-direction at the top of the trajectory is always equal to zero
 - Why is this the case?
 - Depending on the problem, this could be v_{ov} or v_{v}
 - You have to determine which from the problem

- Final Velocity in the X-Direction

- Since there is no acceleration in the x-direction, the velocity in the x-direction is constant
 - No acceleration means no change in the velocity
 - This means that v_x is always equal to v_{ox}

- How long something is in the air (hang time) is only determined by the height of the object
- Since the height is in the y-direction, only the y-direction determines the time
 - As we work projectile problems, finding time from the y-direction (if possible) is a great place to start
- Time is also the only quantity that links the x and y-directions together
 - Because of this, finding time is a wise thing to do first
- Range
 - The range is how far the projectile will travel in the x-direction

Let's use this problem as an example

He has a picture, which is great

He has some of his given information written down

Let's finish it off

When writing out your given for a projectile problem, it is helpful to organize it like I have below

How do I go about finding the initial velocities?

Resolve the given initial velocity into components

x = y = $v_{ox} = 86.6 \text{ m/s}$ $v_{oy} = 50 \text{ m/s}$ $v_x = v_y = 0 \text{ m/s}$ $a_x = 0 \text{ m/s}^2$ $a_y = -9.8 \text{ m/s}^2$ t = $t_{total} = ?$

Which direction (x or y) do I have enough information to solve for t?

x = y =

$$v_{ox} = 86.6 \text{ m/s}$$
 $v_{oy} = 50 \text{ m/s}$
 $v_x = v_y = 0 \text{ m/s}$
 $a_x = 0 \text{ m/s}^2$ $a_y = -9.8 \text{ m/s}^2$
 $t =$
 $t_{total} = ?$

Using the y-direction, I can solve for t

$$v = v_o + at$$

$$t = \frac{-v_o}{a}$$

$$t = \frac{-50}{-9.8}$$

$$t = 5.1s$$

Is this the total time in the air?

x = y =

$$v_{ox} = 86.6 \text{ m/s}$$
 $v_{oy} = 50 \text{ m/s}$
 $v_x = v_y = 0 \text{ m/s}$
 $a_x = 0 \text{ m/s}^2$ $a_y = -9.8 \text{ m/s}^2$
 $t = 5.1 \text{ s}$
 $t_{total} = ?$

To find the total time in the air I need to double the time to the top

$$t_{total} = 10.2s$$

Let's see how Peter did...

